課程目錄:R語言機器學習學術應用培訓
        4401 人關注
        (78637/99817)
        課程大綱:

                  R語言機器學習學術應用培訓

         

         

         

         

        R語言機器學習學術應用
        基礎
        Theory: Features of time series data and forecasting basics

        R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

        中級
        Statistical Learning (SL):

        (0.5 Hour) One-step forecasting: one-step ahead model fit

        (0.5 Hour) Multi-step forecasting: recursive and direct methods

        (6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實做與寫作范例

        (5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實做與寫作范例

        R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

        Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.